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Abstract-Solutions of membrane vibration problems have been utilized for study of fully developed 
combined free and forced laminar convection through straight vertical triangular ducts of shapes (i) 
equilateral, (ii) 3O’do”--90” and (iii) right-angled isosceles Steady state conditions are assumed. All fluid 
properties are considered constant, except for variation of density in the buoyancy terms. Wall tempera- 
ture is assumed varying linearly in the flow direction, while it is considered uniform in the transverse 
direction. Presence of uniform volume heat source has been considered. Exact analytical expressions in 
the form of infinite series have been presented for velocity, temperature and Nusselt numbers for the three 
triangular tubes considered. The difference between the Nusselt number for the three triangles becomes 
relatively small as the value of the Rayleigh number increases. Small values of heat source parameter 

decreases the Nusselt number. 

NOMENCLATURE 

area of a triangle, dimensionless ; 
characteristic length of a tri- 
angle [ft] ; 
are quantities defined in equa- 
tions (25), (20), (26) and (22) 
respectively ; 
specific heat of the fluid at 
constant pressure, [Btu/lb,“F] ; 
temperature gradient in flow 
direction [“F/ft] ; 
hydraulic diameter = (4 . cross- 
sectional area)/(heat-transfer 
perimeter [ft] ; 
heat generation parameter, di- 
mensionless, = QlpC,C1 U ; 
gravitational acceleration [ft/ 
hr’] ; 
average peripheral heat transfer 
coefficient, [BTUhr ft’ OF] ; 

L 

4 n, 
N NV3 

N RAT 

Q, 

4, 

T, 
% 
u, 
4 

x, Y, 

Xl, Yl, 

5 
8. 

pressure drop parameter, di- 
mensionless ; 
dummy indexes, integers ; 
Nusselt number, dimensionless, 
= hD,/k; 
Rayleigh number, dimension- 
less, = @‘g C,C 1 /?D:)/kp ; 
heat generation rate 

[Btu/hr ft3] ; 
average surface heat flux 

[ Btu/hr ft2] : 
temperature [“F] ; 
axial velocity [ft/hr] ; 
average axial velocity [ft/hr] ; 
u/U, dimensionless axial velo- 
city ; 
coordinates [ft] ; 
dimensionless coordinates ; 
axial coordinate [ft] ; 
(T - T,,.) [“F] : 
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dimensionless temperature 
function = O/[pUC,C, D,fjk] ; 
are the fluid properties in stan- 
dard notation ; 
eigen values and eigenfunctions 
of the equation (15). 

INTRODUCTION 

temperature and temperature gradients on the 
inner surface of the tube wall will also result. 
The case of vertical circular tube under com- 
bined free and forced convection and uniform 
axial temperature gradient when rotationally 
symmetric boundary conditions result naturally, 
has been investigated by Ostroumov [2] and 
Hallman [3] among others. 

IN COMPACT heat exchangers and many other 
similar installations, ducts of non-circular shape 
are being employed extensively. For this reason 
study of fluid flow and heat transfer charac- 
teristics in non-circular ducts has become of 
increasing importance. 

It is known that the development of velocity 
and temperature profiles in a tube depends on 
the boundary conditions applied on it. From 
entrance to the heated section of a tube the 
temperature profile varies all along the tube 
length when the wall temperature is maintained 
constant in the axial direction. On the other 
hand when the wall temperature is allowed to 
vary at a uniform rate in the axial direction 
(i.e. uniform heat flux), the temperature profile 
for fluids of constant properties becomes in- 
dependent of the axial position after an initial 
distance of the so-called “entrance length”. 

In flow through circular tubes, under the 
condition of uniform axial wall temperature 
gradient and constant fluid properties, the 
temperature as well as the temperature gradient 
along the circumference on the inner surface 
of a tube remain constant at any axial position 
of the tube. On the other hand, under the same 
conditions, for laminar flow through non- 
circular tubes where flow is retarded at the 
corners, the temperature gradients along the 
inner circumference at a section of the tube 
are expected to be variable [l]. The circum- 
ferential wall temperature may, however, tend 
to be uniform if the tube wall is of high thermal 
conductivity material and is not too thin. 

For non-circular tubes of certain conligura- 
tion, when the inner wall temperature at a 
tube section is assumed constant along the 
circumference and the axial temperature gradient 
is uniform, the temperature distribution in the 
fluid has been obtained from mathematically 
analogous cases in elasticity. It is known that 
the equations for deflection of thin plates 
subjected to uniform lateral load and supported 
along all edges are identical to the equations 
describing limiting temperature distributions 
in fluids in laminar motion in tubes of identical 
cross-section as those of the plates. Therefore, 
if the boundary conditions for equation of 
plate deflection and those for equation of 
temperature distribution are also identical, 
then the available solution from plate theory 
should be readily applicable to a corresponding 
problem for heat flow. The analogy between 
equation of fluid flow through a tube and torsion 
of a uniform rod of same shape has been known 
since quite some time [4]. Marco and Han [5] 
have utilized the solution of plate theory to 
obtain solutions for forced convection heat 
transfer through non-circular tubes of various 
configurations. Eckert et [6] lami- 

forced heat-transfer 
for through shaped In 

discussion a by [7], [8, 
has that problem combined 

and convection vertical 
tubes uniform tem- 

gradient also solved analogy 
the theory. 

we laminar and The in theory bear 
convection in vertical duct to problem investigation 
under axial gradient, (1) supported lying an 
above of asymmetric (2) vibrations a 
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supported plate and (3) stability problem of a 
simply supported plate acted on by lateral 
thrust. Wakasugi [lo, 111 has solved the 
stability problem for various triangular shapes. 

In this analysis combined free and forced 
convection under uniform heat flux of vertical, 
equilateral, right triangular with 60”, and right- 
angled isosceles triangular ducts has been 
investigated. 

STATEMENT OF THE PROBLEM 
AND ASSUMPTIONS 

Consider fully developed steady laminar 
flow through a straight vertical duct of an 
arbitrary shape as shown in Fig. l(a). The flow 
is in the vertical upwards direction along the 
positive z-axis. Heat flux in the flow direction 
is considered uniform, while the heat flux 
in the transverse direction is assumed to vary 
in such a manner that the wall temperature 
becomes rotationally symmetrical (i.e. circum- 
ferentially uniform wall temperature). All fluid 
properties are assumed constant except for the 
variation of density in the body force term of 
the momentum equation. Viscous dissipation, 
pressure and axial conduction terms in the 
energy equation are ignored. The fluid contains 
uniform volume heat source which is assumed 
invariant with temperature. 

Under the above conditions the wall and 
the fluid temperature become linear along the 
flow direction and the governing equations of 
momentum and energy are as follows, 

The density can be assumed to vary linearly 
with temperature and for use in the buoyancy 
terms here, it can be expressed as, 

P =PwCl - B(T - TJI. (3) 

The wall temperature is defined by, 

T,=T,+z$ 
where To is the reference temperature at z = 0 
and aT/az = C,, C, being a constant is the 
temperature gradient in the flow direction. 
Equations (1) and (2) are to be expressed in non- 
dimensional terms with the help of the follow- 
ing parameters, 

x1 = x/D,,, Y, = Y/D,> 

v = u/u, 

F = QIW,C, U)> 

NRa = (~%C,GN’~)/(d4~ ! 
Substituting (3) in (1) and using the parameters 

in (4), the non-dimensionalized equations can 
be written as, 

a24 a24 
2+2-v= -F. 

ay, 1 
(6) 

The equations (5) and (6) are to be solved under 
the boundary conditions, 

4 = v = 0, at the wall. (7) 

GENERAL SOLUTION 

First of all we try to obtain a general solution 
of the equations (5x7) for the arbitrary shaped 
duct in Fig. l(a). We will then specialize the 
general solution for the three triangular ducts. 

Equations (5) and (6) can be combined to- 
gether to write the resulting equation only in 
terms of 4 as, 

V”4 + N&J = -L, in the duct (8) 

with 

4 = 0, V’4 = -F at the boundary. (9) 
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FIG. 1. Coordinate system. 

Equation (8) is mathematically equivalent to de- 
flection ofa thin plate lying on elastic foundation. 
Now let 

4 = 41 + 42, (10) 

where 

with 

V24, = -F, in the duct (11) 

41 = 0 at the boundary. (12) 

This gives 

V4$, + NRa& = -L - NRo41 in the duct (13) 

with 

& = V2& = 0 at the boundary. (14) 

Our interest is now to reduce the problem to an 
eigenvalue problem. 

Let 1, and II/,, (n = 1,2,3. . CO), be the eigen- 
values and eigenfunctions of the problem, 

V2$ + A$ = 0 in the duct (15) 

with 

$ = 0 at the boundary. (16) 

We arrange I, in increasing order so that, 

I, 6 ;/2 6 i,, . . . . (17) 

We assume also that (&) have been orthonor- 
malized. i.e. 

jS I(/&,,,dx, dy, = 6, for n # m, (18) 

where 6, is the Kronecker delta function, 

6,, = 0 for m#n 

6,, = 1 for m = n. I 
(19) 

If we now write 

1 = c b,$,> (20) 

multiply both sides of this equation by $k 
and integrate over the duct, we obtain 

b, = !j $k dx, dy,. (21) 

It is known [12] that all sufficiently smooth 
functions can be expanded in terms of II/,. We, 
therefore, write 

4i = C a,$,, (2 la) 

$2 = c C”$rn 6-1 

4 = 1 d&m (21c) 

v = c sn*n> (214 

where the constants a,,, c,,, d, and .q,, are to be 
determined. 

From (10) we obtain 

d, = a,, + c,,. 

Also, from (6) we rewrite 

v = V”I$ + F. 1 

= V’C$ + c Fb&, 

(22) 

(64 
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where 

However, from (21~) 

V’~J = c d,(V2+.), 

and since 

we obtain 

V2& = -Mm 

V”$ = -1 d,J,$,. 

Substituting this in (6a) gives us the relation for 
velocity as, 

c s.+. = -c d.A,$n + c Fb,rtL 

which gives 

g, = Fb, - 1 d n n. (23) 

Now substituting (21a) in (1 l), we obtain 

-c &A, = - 1 J&k,. (24) 

Therefore, 

a,, = Fb,/A,,. (25) 

Similarly, (13) and (14) give 

C” = - 
Lb, + (FN,W& 

A,2 + NRo ’ (26) 

The constants a,, c,, d, and gn have now been 
determined. 

The pressure drop parameter L is a function 
of only the Rayleigh number NRn and the 
generation parameter F. The parameter 
obtained from the continuity equation, 

SjudA = SjdA 

= area of the duct, A, 

Therefore 

c S”(JS 1/1”) = A. 

Using (21), this give, 

cg&, = A. 

heat 
L is 

(27) 

Now from (23), 

g. = Fb, - I,d, 

= Fb, - &(a,, + c,) 

Lb,& + (FN,b,) = 
1: + NRa ’ 

Since, area = 1 g,b, 

Therefore 

L = A - c V’bab:)/(~,2 + N,) 
1 &b.Z/(X + NRo) ’ (28) 

This completes the general solution of the 
problem as far as the velocity and temperature 
distribution in the duct are required. For engin- 
eering purposes one also requires the rate of heat 
transfer from the wall. An expression for this 
parameter is developed in the following section. 

NUSSELT NUMBER 

Nusselt number is the dimensionless para- 
meter indicative of the rate of energy convection 
from a surface. It is expressed as 

D,h Dt, q 
NNU=~=~.~._ Tb (29) 

where h, the convection heat-transfer coefficient, 
is based on mixed mean temperature of the fluid. 
Nusselt number can be expressed also as, 

NNU = -$J, 
mx 

(30) 

where 4, is the dimensionless mixed mean 
temperature difference between the fluid and 
the wall at the same location, 

4, = j! &r dA/jj D dA. (31) 



Substitution from (21~) and (21d) gives 

(32) 

This completes the general solution of the prob- 
lem. This means that if we know $,, b,, and I,, 
for a membrane of any shape, the Nusselt 
number for the ducts of corresponding shape 
can also be obtained from the same solution 
Our interest is to apply the membrane solutions 
for three duct shapes for which the Nusselt 
numbers do not appear to be available in the 
literature. 

III our case, however, b, is different from zero 
only for the following eigenfunctions : 

+ (-_l)“+‘s~n~.~ 1 . (33) 

The constant (J2)/J(3ab) in $, has been adjusted 
to satisfy (18). We obtain b, from (21) and it turns 
out to be 

b = (- 1)“” ,/(64 
n (34) 

n71 

Also, we have, 

PARTICULAR SOLUTIONS 
42 

We now specialize the general solution to the 
____~ 

three triangular ducts. The required quantities 
v2*n = J(3ab) 

$,,, b,, and A,, for each case are given below. + (-l)“+‘siny, (35) 

(I) Eyuilateral triangular duct therefore 
The equilateral triangle is shown in Fig. l(b). 

It is easy to show that the following expressions 
for $, are equivalent to those given by Wakasugi 
[ 10, equations (5) and (6)]. 

_ (-_i)“i”sini!?K!$!k! ’ x sin !!!Y 
b 

+ (_ l)m sin (m - 4Xx sin (m + 471~ ~__ 
3a b -1 

+(-l),,, 
(m + 2n)z.u: mny cos _-~~~___ X sin - 

3a h 

4n2z2 4n27z2 
i,=hZ-=3n2. (36) 

(2) 30”, 60” Right-angled triangular duct 
This triangle is shown in Fig. l(c). For this 

triangle the three desired quantities in a similar 
amount as before following Wakasugi [ 1 l] are, 

- sin ((m + n) xx/a) sin ($I!.$?) 

my 
+ sin ((2m + n) xx/a) stnF,T3 . 

I 
(37) 

it,” = 7 fz’ (3m2 + n2 + 3mn). (38) 

+ (- l)m+’ 
(m - 12)71x . (m + n)7ry 

cos --3a- sin b 
I 

b _ aJ.25 mn - 7r2 J(J3) 

where c,, and d,, are certain constants, and b 
is the altitude. 

1 - cos (rn + n) n ______~ 
(m + n)(3m + n) 1 (39) 
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(3) Right-angled isosceles triangular duct 
The coordinate system for this triangle is 

shown in Fig. l(d) and the required quantities 
are, 

2 mrcx nny 
$,, = a 

[ 
suasin, 

_ sin n71x sin !?Y 1 for n > m 
a a 

b,, = 
8an 

m7c2(n2 - m2) 

if n is even and m is odd (n > m) 

8am 
= 

n7c2(n2 - m2) 

if m is even and n is odd (n > m) 

= 0 

if n and m are both odd or both even. 

A,, = (m2 + n2)n2/a2. 

(414 

VW 

(42) 

This completes exact solution of fully devel- 
oped combined free and forced convection with 
uniform internal heat sources in the fluid, in 
the three specified vertical triangular ducts. 

DISCUSSION 

The values of Nusselt number, equation (30) 
and the pressure drop parameter, equation (28) 
have been computed for several values of 
the Rayleigh number for each of the three tri- 
angular configurations. At F = 0 those values of 
Nusselt number and pressure drop parameter 
are listed in Table 1. At F = 0 the variation of 
Nusselt number and pressure drop parameter 
against Rayleigh number is also shown in 
Figs. 2 and 3, respectively. In Fig. 2, Nusselt 
numbers for only two triangles are shown as 
there was not enough space on this diagram for 
the right-angled isosceles. In Fig. 3, one curve is 
shown as pressure drop parameter for all three 
ducts, although there is a slight numerical 
difference in their numerical values, Table 1. 
At zero Rayleigh number, the values of Nusselt 
number for the tubes agree with the results of 
references [13, 141. At zero Rayleigh number, 
highest value of the Nusselt number is obtained 
by the equilateral triangle. As the value of the 
Rayleigh number is increased, the percentage 
difference in Nusselt number between the three 
cases diminishes. It, therefore, means that the 
presence of large free convection effects tend to 

Tuble 1. Variation of Nusselt number and pressure drop parameter against Rayleigh numberfor three triangular ducts 

Rayleigh Nusselt number N,, Pressure drop parameter L 
number 

N Ra 60-60”-60” 30”-60”-90” 45”A5”-90 60”-60”--60” -3o”-60-90” 45”-I5”--90” 

0 3.1111 2.8875 2.9819 266668 
10 3.1249 2.9067 2.9984 27.4686 
lo2 3.2415 3.0730 3.1436 34.5306 

3 x lo2 3.4447 3.3280 3.3719 45.7385 
5 x loz 3.1537 3.7017 3.7183 63.1045 
8 x 10’ 4.0392 4.0250 4.0275 79.1441 

lo3 4.3029 4.3091 4.3053 94.1270 
2 x lo3 5.1761 51903 5.1891 146.7824 
3 x lo3 5.8375 5.8314 5.8400 192.1201 
5 x lo3 6,797 1 67632 6.7833 27 1.0402 
8 x 10’ 7.6444 7.5975 I.6247 357.4286 

104 8.2944 8.2406 8.2737 435.7798 
2 x 104 10.0640 9.9778 10.0368 7067318 
3 x lo4 11.2540 11.1304 11.2161 940.8602 
5 x lo4 12.9369 12.7397 12.8782 1353.0771 
8 x lo4 14.4346 14.1474 14.3506 1808.9477 

lo5 15.5929 15.2170 15.4837 2224.8617 

26.0677 263063 
26.9307 21.1424 
34.4557 34.4690 
46.1709 45.9797 
63.9450 63.6066 
80.1168 79.7410 
95.1109 94.7386 

147.5910 147.2683 
192.8906 192.5375 
272.0165 271.5378 
358.9599 358.1352 
437.8083 436.6856 
710.7794 708.3187 
947.2163 943-1565 

1364.9150 1357.0093 
1828.9385 1815.2493 
2254.2 112 2233.8451 
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diminish the difference in heat-transfer rate Rayleigh number have been chosen to show 
between the three configurations considered. significantlydifferentvariations.At X, = y, = 0, 

I I 

1 1 
Equlloteral triangle 

F=O 
F=O 

i 

I 
(See +ob,e , ‘or r,ght - angled ~sosceles) 

F-I<;. 2. Nusselt number against Rayleigh number. 

(Numer~al values shghtly different, 

see table I) 

FIG. 3. Pressure drop parameter against Rayleigh number. 

This does not mean, however, that for a triangular 
duct with any arbitary angles the Nusselt num- 
bers will be the same or very close to those ob- 
tained for the three cases considered. In pure 
forced convection, it has been shown [13, 141 
that considerable variation in Nusselt numbers 
results when the angles are varied by large 
amounts. Unfortunately, the present analysis 
does not extend itself for any arbitrary angles of a 
triangular duct. This could have been possible, 
however, if the corresponding solutions of Axial distance xi= x ID,, 

membrane problems were available. 
FIG. 5. Dimensionless velocity t’ at two radial positions 

The velocity profile plots at F = 0, are given 
against axial distance xr for various values of the Rayleigh 

number. 

in Figs. 4-6. Figure 4 is for the equilateral 
triangle. The velocity profiles are at xi = 0 the velocity gradient is higher than at x1 = 0, 
and y, varying from 0 to 1.5. Three values of the yi = 1.5, for the simple fact that the flow at the 

0.5 IO 

Ax~ol dastance yi =y/Dh 

FIG. 4. Dimensionless velocity tl against dimensionless axial 
distance y, for various values of the Rayleigh number. 
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comer angles slows down. As the Rayleigh 
number increases, the flow accelerates near the 

I Rlqht-onqled ~sosceles tmnqle 

FIG. 6. Dimensionless velocity u along the line 1 - m against 
axial distance X, for various values of the Rayleigh number. 

walls. To satisfy continuity, the flow slows down 
near the tube “centre”. For large values of the 
Rayleigh number, it is possible to obtain flow 
reversal at the tube “centre”, while the net flow 
remains in the upwards direction. This indeed 
is true at Rayleigh number of 104. It is unlikely, 
however, that in practice a flow reversal near 
the “centre” will be possible to maintain. For a 
similar situation in vertical circular tubes it is 
known [15] that flow reversal at the tube centre 
or near the wall gives rise to flow instability and 
eventually turbulent flow results. 

The velocity profiles for 30”~60” triangle are 
shown in Fig. 5. The velocity profiles are plotted 
for two radial positions; lo” and 20” from the 
x-axis. They are indicated in solid line and in 
dotted line respectively. At zero Rayleigh number 
the velocity gradients at the corner angle of 30 
are much smaller than those at the wall, x1 = 
2,366. As the Rayleigh number is increased, the 
velocity increases near the walls, while near the 
“centre” it slows down. The numerical data 
shows that for this tube, flow reversal will take 
place at Rayleigh number near to 10’. This value, 
however, is not plotted in Fig. 5. 

For right angled isosceles triangular tube, the 

velocity profiles are shown in Fig. 6. These 
profiles are along a line called 1 - m, connecting 
the right-angled corner and middle point of the 
hypotenuse. These profiles are very similar 
to those of Fig. 4. The flow reversal occurs at a 
Rayleigh number of close to 104. 

At F = 0, the temperature profiles for the three 
triangles are plotted in Figs. 7-9. Figure 7 
shows the temperature profiles for the equilateral 
triangle. As expected, the temperature difference 
between the wall and fluid decreases as the Ray- 
leigh number increases, This pattern remains the 
same for the 30”~60” triangle, Fig. 8 and the 
right-angled isosceles triangle, Fig. 9. This re- 
duced temperature difference with increasing 
values of the Rayleigh number increases the 
Nusselt number as is apparent from Table 1 
and Fig. 2. 

The effect of internal heat generation para- 
meter on various quantities has also been in- 
vestigated. The heat generation parameter de- 
creases the Nusselt number, until the Nusselt 
number becomes zero when F = 1. This result 
one expects from physical arguments and 
also from equation (30). The pressure drop 
parameter also decreases as the heat generation 

, I 

-0 I5 Equilateral trcangle 

r , 

-000 I / 

0.0 0.5 l-0 5 

Axial distance x=y/& 

FIG. 7. Dimensionless temperature difference C$ at x1 = 0 
against axial distance y, for various values of the Rayleigh 

number. 
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I 1 I 

SO”-60” Tnongle 

00 0.5 IO I5 2.0 2,366 

Frc;. 8. DimensIonless temperature difference # at two 
radial positions against axial distance X, for various values 

of the Rayleigh number. 

FIG. 9. Dzmenslonless temperature difference I#I along lrne 
I - m for various values of the Rayleigh number. 

parameter increases. However, this happens 
only when the free convection effect is also 
present, i.e. when the velocity and temperature 
fields are coupled. Therefore, the influence of 
heat generation parameter on the pressure drop 
parameter depends upon the strength of the 
coupling of velocity and temperature fields, i.e. 
on the value of the Rayleigh number as well. 

The internal heat generation parameter effects 
the velocity distribution as well, as long as there 
is coupling between the velocity and tempera- 
ture fields, i.e. the presence of free convection 
in the flow. The heat generation parameter has a 
dominant effect on the temperature distribution. 
This effect is independent ofthe above mentioned 
coupling, however. 

The influence of heat generation parameter 
on Nusselt number, pressure drop parameter, 
velocity and temperature distribution in the 
three triangular ducts has not been illustrated 
with the help of diagrams. The reason for this is 
that the general effect of the heat generation 
parameter is similar to the reports of other 
researchers, for instance [I_‘] and [7]. From the 
foregoing analysis, one can indeed evaluate 
exactly any of the desired quantities with or 
without heat generation parameter and Rayleigh 
number. 

CONCLUSIONS 

Exact analytical solutionsofcombined free and 
forced convection through vertical triangular 
tubes of shapes (i) equilateral, (ii) 30”40‘-90” 
triangular and (iii) right-angled isosceles tri- 
angular tubes have been presented. Effect of 
heat generation has been included. Nusselt 
number increases with Rayleigh number. How- 
ever, the relative difference between the Nusselt 
n\lmber for the three shapes studied diminishes 
as the Rayleigh number is increased. 

ACIUVOWLEDGEMENTS 
Financial support of the National Research Council of 

Canada is gratefully acknowledged. Thanks are due to 
Mr. Satish Sikka for computational assistance. 

REFERENCES 
1. E. R. G. ECK~RT and T. F. IRVINE, JR. Pressure drop 

and heat transfer in a duct with triangular cross section, 
Trans. Am. Sot. Mech. Engrs, J. Hear Transfer (C) 
82, 125-138 (1960). 

2. G. A. OSTROUMOV, Mathematical theory of the steady 
heat transfer in a circular vertical hole with super- 
position of forced and free laminar convection, f. 
Tech. Phys. 20, %50-157 (1950). 

3. T. M. HALLMAN, Combined forced and free laminar 



ON LIMITING NUSSELT NUMBERS 747 

heat transfer in vertical tubes with uniform internal 
heat generation, Trans. Am. Sot. Mech. Engrs, J. 
Heat Transfer (C)78, 1831-1841 (1956). 

4. J. Bous~~NE~~, “Etude nouvelle sur l’bquilibre et le 
mouvement des corps solides Clastiques dont certaines 
dimensions sont trCs-petites par rapport il d’autres”, 
J. Murh. Pures Appl. Ser. 2, 16, 125-274 (1871). 

5. S. M. MARCO and L. S. HAN, A note on limiting laminar 
Nusselt number in ducts with constant temperature 
gradient by analogy to thin-plate theory, Trans. Am. 
Sot. Mech. Engrs, J. Heat Transfer (C)77, 625-630 
(1955). 

6. E. R. G. ECKERT, T. F. IRVINE, JR. and J. T. YEN, 
Local laminar heat transfer in wedge-shaped passages, 
Trans. Am. Sot. Mech. Engrs, J. Heat Transfer (C)80, 
1433-1438 (1958). 

7. L. S. HAN, Laminar heat transfer in rectangular 
channels, Trans. Am. Sot. Mech. Engrs, J. Hear Transfer 
(C)81, 121-128 (1959). 

8. P. C. Lu, A theoretical investigation of combined free 
forced convection heat generating laminar flow inside 
vertical pipes with prescribed wall temperatures, M.S. 
Thesis, Kansas State College, Manhattan, Kansas 
(1959). 

9. PAU-CHANG Lu, Combined free and forced convection 
heat-generating laminar flow inside vertical pipes 
with circular sector cross sections, Trans. Am. Sot. 
Mech. Engrs, J. Heat Transfer (C)82, 227-232 (1960). 

10. S. WAKASUGI, Buckling of a simply supported equi- 
lateral triangular plate, Bull. J.S.M.E. 4,2&25 (1961). 

11. S. WAKAXJGI, Buckling of a simply-supported tri- 
angular plate having inner angles of 30, 60 and 90 
degrees, Bull. J.S.M.E. 4, 16-20 (1961). 

12. R. COURANT and D. HILBE~T, Methods of Mathematical 
Physics, Vol. 1, Interscience, New York (1953). 

13. E. M. SPARROW and A. HAJI-SHEIKH, Laminar heat 
transfer and pressure drop in isosceles triangular, 
right triangular and circular ducts, Trans. Am. Sot. 
Mech. Engrs, J. Hear Transfer (C)87, 42&427 (1965). 

14. F. W. SCHMIDT and M. E. NEWELL, Heat transfer in 
fully developed laminar flow through rectangular 
and isosceles triangular ducts, Int. J. Hear Mass 
Transfer 10, 1121-1123 (1967). 

15. G. F. SCHEELE, The effect of natural convection on 
transition to disturbed flow in a vertical pipe, Pli.D. 
Thesis in Chemical Engineering, University of Illinois 
(1962). 

R&ma&Des solutions des problemes de vibration de membrane ont ttt utilisCes pour l’irtude de la 
convection laminaire mixte (naturelle et for&e) entitrement Ctablie g travers des conduites rectilignes 
verticales il sections triangulaires 1”) Cquilattrales, 2”) avec des angles tgaux & 30”, 60” et 90” et 3”) isoctle 
avec un angle droit. On suppose qu’on se trouve en rtgime permanent. Toutes les propriCti?s de fluide 
sont consid&& comme constantes, sauf pour la variation de densite dans les termes de pous& d’Archi- 
mkde. On suppose que la temptrature pa&ale varie lineairement dans la direction de l%coulement, 
tandis qu’on la considkre comme uniforme dans la direction transversale. On a tenu compte de la prCsence 
d’une source de chaleur volumique uniforme. Des expressions thCoriques exactes sous la forme de s6ries 
intinies ont et& prbsent&es pour la vitesse, la tempkrature et les nombres de Nusselt pour les trois tubes 
triangulaires considtrts. Les diffirences entre les nombres de Nusselt pour les trois conduites triangulaires 
deviennent relativement faibles lorsque la valeur du nombre de Rayleigh augmente. Les petites valeurs 

du parametre de source de chaleur diminuent le nombre de Nusselt. 

Zusammenfassung- Lijsungen von Membranschwingungsproblemen wurden zum Studium der vollaus- 
gebildeten, freien und erzwurgenen laminaren Konvektion durch gerade, senktechte Dreickskanale 
folgender Gestalt herangezogen, (i) gleichseitig, (ii) 30” - 60” - 90” und (iii) rechtwinklig, gleichschenklig. 

Stationlrer Zustand sei vorausgesetzt Alle stoffwerte mit Ausnahme der Dichte im Auftriebsglied 
werden als konstant vorausgesetzt. Die Wandtemperatur Lndert sich linear in Str6mungsrichtung und ist 
gleichfijrmig in Richtung senkrecht dazu 

Gleichfsrmig verteilte WIrmequellen wurden mit in Betracht gezogen. 
Fiir die drei betrachteten KanLle werden das Geschwindigkeits- und Temperaturfeld und die Nusselt- 

zahlen durch exakte Ausdriicke in Form unendlicher Reihen dargestellt. 
Mit steigenden Werten der Rayleigh-Zahl wird der Unterschied zwischen den Nusselzahlen fiir die 
drei Dreiecke relativ klein. Kleine Werte fiir den WLrmequellenparameter senken die Nusselt-Zahl. 

AIiHOTa~WI-PeweHMH 33RaY AJIA Kone6nmrueticn MeM6paHbl MCnOJIb30BaJIHCb ~JIH M3YVeHklR 

nOJIHOCTbH) p33BIITOfi COBMeCTHOCi CBO60~~0ti M BbIHJWAeHHO& JIaMElHapHOfi KOHBeKLQ,H B 

IlpFlMblX BepTI.lKWIbHbIX TpeyrOJlbHbIX KaHaJlaX CJIeAyIOUkiX @OpM: 

(1) PaBHOCTOpOHHeti, (2) 30°-60"-900 I4 (3) IIpnMOyrOJIbHOfi paBHo6eApeHHofi. ~PMHRTO, 

'lT0 J'CJIOBHH RBJIRIOTCH CTaqMOHapHbIMH. RCe CBOikTBa X(IIAKOCTR CYATaIOTCH IIOCTORHHbIMl,, 

38 RCKJItO'IeHAeM IIJfOTHOCTH, BXOAHUeti B YJIeHbI C IIOA%eMHOfi CIUIOfi. npHKFITO,YTO TeMne- 

paTJ'p3CTeHKWH3MeHReTCHJILIHetiHOB HaItpaBJIeHIlHTe~eHllH,BTO BpeMFl KaKBIlOlEpf3HOM 

HaIIpaBJIeHMM OHa CYHTaeTCFI OAHOpOAHOti. PZiCCMOTpeHO HaJIMYAe OAHOPOAHOl-0 06%eMnoro 
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IICTo~fIHfi;I TClln3. 13 1111,\(' ~l'~~I~I~Il~!rIHLIX pHflOlJ IIpeflcT~B~lt!HLl TO~~flbIe ~ll~~IIlTM'I~'~'HIf~ IlLl~);i- 

X~HIIH nn~ CKO~OCTI~, T~?MII~~~T~~LI II KpHTepwf HJWPJILT~ ;L??H ~~CCMOT~~HIILIX ~pyf' T~CX 

(POPM. Pa3HOCTL MeXiqy 3~fiqeK5fnMIf f<pHTepHR HYCCPJILT~ J(JfFf Tpex TLIIIOR Tpeyf-OJILHhIX 

ICBIIBJIO,, CTaHOBIiTCR OTHOCCITeJIbf~O He6OJ1b~IIOri- II0 Mepe yBC.XWJeHIJR KpflTepWi I'CJfefl. 


