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Abstract—Solutions of membrane vibration problems have been utilized for study of fully developed
combined free and forced laminar convection through straight vertical triangular ducts of shapes (i)
equilateral, (ii) 30°—60°—90° and (iii) right-angled isosceles. Steady state conditions are assumed. All fluid
properties are considered constant, except for variation of density in the buoyancy terms. Wall tempera-
ture is assumed varying linearly in the flow direction, while it is considered uniform in the transverse
direction. Presence of uniform volume heat source has been considered. Exact analytical expressions in
the form of infinite series have been presented for velocity, temperature and Nusselt numbers for the three
triangular tubes considered. The difference between the Nusselt number for the three triangles becomes
relatively small as the value of the Rayleigh number increases. Small values of heat source parameter

decreases the Nusselt number.

NOMENCLATURE

A4,
a,

an’ bn, cn’ dn’

C,

Cl,

Dh’

F,

9,

area ofa triangle, dimensionless ;
characteristic length of a tri-
angle [ft];

are quantities defined in equa-
tions (25), (20), (26) and (22)
respectively ;

specific heat of the fluid at
constant pressure, [Btu/lb,,°F] ;
temperature gradient in flow
direction [°F/ft];

hydraulic diameter = (4 - cross-
sectional  area)/(heat-transfer
perimeter [ft] ;

heat generation parameter, di-
mensionless, = Q/pC,C,U;
gravitational acceleration [ft/
hr?];

average peripheral heat transfer
coefficient, [BTU /hrft2°F];
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X5 Vs
X1s V1,
Z,

0.

pressure drop parameter, di-
mensionless ;
dummy indexes, integers;
Nusselt number, dimensionless,
= hDy/k;
Rayleigh number, dimension-
less, = (p*gC,C,BD})/ku;
heat generation rate
[Btu/hr ft3];
average surface heat flux
[Btu/hr ft2] :
temperature [°F];
axial velocity [ft/hr];
average axial velocity [ft/hr];
u/U, dimensionless axial velo-
city;
coordinates [ft];
dimensionless coordinates;
axial coordinate {ft];
(T — T)[°F]:
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o, dimensionless temperature
function = 0/[pUC,C,D}/k];

B, o, k, u, are the fluid properties in stan-
dard notation;
A Wiy eigen values and eigenfunctions

of the equation (15).

INTRODUCTION
IN coMPACT heat exchangers and many other
similar installations, ducts of non-circular shape
are being employed extensively. For this reason
study of fluid flow and heat transfer charac-
teristics in non-circular ducts has become of
increasing importance.

It is known that the development of velocity
and temperature profiles in a tube depends on
the boundary conditions applied on it. From
entrance to the heated section of a tube the
temperature profile varies all along the tube
length when the wall temperature is maintained
constant in the axial direction. On the other
hand when the wall temperature is allowed to
vary at a uniform rate in the axial direction
(i.e. uniform heat flux), the temperature profile
for fluids of constant properties becomes in-
dependent of the axial position after an initial
distance of the so-called “‘entrance length”.

In flow through circular tubes, under the
condition of uniform axial wall temperature
gradient and constant fluid properties, the
temperature as well as the temperature gradient
along the circumference on the inner surface
of a tube remain constant at any axial position
of the tube. On the other hand, under the same
conditions, for laminar flow through non-
circular tubes where flow is retarded at the
corners, the temperature gradients along the
inner circumference at a section of the tube
are expected to be variable [1]. The circum-
ferential wall temperature may, however, tend
to be uniform if the tube wall is of high thermal
conductivity material and is not too thin.

When we consider laminar free and forced
convection flow in a vertical non-circular duct
under uniform axial temperature gradient, the
above situation of rotationally asymmetric
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temperature and temperature gradients on the
inner surface of the tube wall will also result.
The case of vertical circular tube under com-
bined free and forced convection and uniform
axial temperature gradient when rotationally
symmetric boundary conditions result naturally,
has been investigated by Ostroumov [2] and
Hallman [3] among others.

For non-circular tubes of certain configura-
tion, when the inner wall temperature at a
tube section is assumed constant along the
circumference and the axial temperature gradient
is uniform, the temperature distribution in the
fluid has been obtained from mathematically
analogous cases in elasticity. It is known that
the equations for deflection of thin plates
subjected to uniform lateral load and supported
along all edges are identical to the equations
describing limiting temperature distributions
in fluids in laminar motion in tubes of identical
cross-section as those of the plates. Therefore,
if the boundary conditions for equation of
plate deflection and those for equation of
temperature distribution are also identical,
then the available solution from plate theory
should be readily applicable to a corresponding
problem for heat flow. The analogy between
equation of fluid flow through a tube and torsion
of a uniform rod of same shape has been known
since quite some time [4]. Marco and Han [5]
have utilized the solution of plate theory to
obtain solutions for forced convection heat
transfer through non-circular tubes of various
configurations. Eckert et al. [ 6] obtained lami-
nar forced convection heat-transfer solutions
for flow through wedge shaped passages. In
a discussion on a paper by Han [7], Lu [8, 9]
has indicated that the problem of combined
free and forced convection through vertical
rectangular tubes under uniform axial tem-
perature gradient can also be solved by analogy
to the plate theory.

The problems in plate theory that bear direct
relation to the problem under investigation are
(1) simply supported plate lying on an elastic
foundation, (2) free vibrations of a simply
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supported plate and (3) stability problem of a
simply supported plate acted on by lateral
thrust. Wakasugi [10, 11] has solved the
stability problem for various triangular shapes.

In this analysis combined free and forced
convection under uniform heat flux of vertical,
equilateral, right triangular with 60°, and right-
angled isosceles triangular ducts has been
investigated.

STATEMENT OF THE PROBLEM
AND ASSUMPTIONS

Consider fully developed steady laminar
flow through a straight vertical duct of an
arbitrary shape as shown in Fig. 1(a). The flow
is in the vertical upwards direction along the
positive z-axis. Heat flux in the flow direction
is considered uniform, while the heat flux
in the transverse direction is assumed to vary
in such a manner that the wall temperature
becomes rotationally symmetrical (i.e. circum-
ferentially uniform wall temperature). All fluid
properties are assumed constant except for the
variation of density in the body force term of
the momentum equation. Viscous dissipation,
pressure and axial conduction terms in the
energy equation are ignored. The fluid contains
uniform volume heat source which is assumed
invariant with temperature.

Under the above conditions the wall and
the fluid temperature become linear along the
flow direction and the governing equations of
momentum and energy are as follows,

op %u  %u
0=—£+H<ﬁ+5§>—l)g, 1)
oT T  o*T
e k(a_ * W> e 0

The density can be assumed to vary linearly
with temperature and for use in the buoyancy
terms here, it can be expressed as,

p=pul— BT — T,)]. 3

The wall temperature is defined by,
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T, =T, + 26_7:’

0z
where T, is the reference temperature at z = 0
and 0T/0z = C,,C, being a constant is the
temperature gradient in the flow direction.
Equations (1) and (2) are to be expressed in non-
dimensional terms with the help of the follow-

ing parameters,
x; = x/D,, y1="Y/Dp 1

v=u/U,
2
6 — (- 1y | PUCERE |

3]
e [ end

F = Q/pC,C,U),
Ng, = (p*9C,CBD})/(uk). )

Substituting (3) in (1) and using the parameters
in (4), the non-dimensionalized equations can
be written as,

(4)

v 0
67%+5E+NR‘,¢=—L, (5)
52 82

The equations (5) and (6) are to be solved under
the boundary conditions,

¢ =0v=0, atthe wall @)

GENERAL SOLUTION

First of all we try to obtain a general solution
of the equations (5)+7) for the arbitrary shaped
duct in Fig. 1(a). We will then specialize the
general solution for the three triangular ducts.

Equations (5) and (6) can be combined to-
gether to write the resulting equation only in
terms of ¢ as,

V4 + N, = —L, intheduct (8)

with

¢ =0, V’¢ = —F atthe boundary. (9)
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aq——=i

FIG. 1. Coordinate system.

Equation (8) is mathematically equivaient to de-
flection of a thin plate lying on elastic foundation.
Now let

¢ =d, + ¢ (10)
where
V3¢, = —F, in the duct (11
with
¢, = 0 at the boundary. (12)
This gives

V4, + Ngas = —L — Ng,¢, in the duct(13)
with
¢, = V2¢, = 0 at the boundary.  (14)

Our interest is now to reduce the problem to an
eigenvalue problem.

Let A,and ¢, (n = 1,2,3... o), be the eigen-
values and eigenfunctions of the problem,
V2 + Ay = 0 in the duct (15)

with
¥ = 0 at the boundary. (16)
We arrange 4, in increasing order so that,
A <A €45 (17)

We assume also that (i,) have been orthonor-
malized, i.e.

_” '//n‘/jm dxl dyl = 5mn for (18)

n < m,

where 8, is the Kronecker delta function,

Spm =0
} (19)

1=Y b, (20)

multiply both sides of this equation by ¥,
and integrate over the duct, we obtain

by = “ Yy dx dy,.

for m+#n
O = 1 for m=n.

If we now write

21

It is known [12] that all sufficiently smooth
functions can be expanded in terms of y,. We,
therefore, write

b1 =2 (21a)
b2 =2 Chy (21b)
¢ =) d (21c)
0= gu¥m (21d)

where the constants a,, ¢, d, and g, are to be
determined.
From (10) we obtain

d,=a, + c, (22)
Also, from (6) we rewrite
v=V¢+ F-1
= V¢ + Y Fb, (6a)
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where

62 32
Vi=_—S + .
ox? + oy3
However, from (21c)

Vi = 3 d (V)
and since
VA, = — i,
we obtain
Vi = —3 dudifs

Substituting this in (6a) gives us the relation for
velocity as,

Zgn’m[/n = _Zdn'lnl//n + Z an'/’m

which gives

g, = Fb, — A.d,. (23)
Now substituting (21a) in (11), we obtain
— Y Gty = =2 Fb,. (24)
Therefore,
a, = Fb,/2,. 25)
Similarly, (13) and (14) give
_ _Lht FNeb)b e

c, =
" A2 + Ng,

The constants a,, ¢, d, and g, have now been
determined.

The pressure drop parameter L is a function
of only the Rayleigh number N, and the heat
generation parameter F. The parameter L is
obtained from the continuity equation,

H vdd = j [ dA
= area of the duct, 4, (27)
Therefore
29 (§f ) = 4.
Using (21), this give,

2 gabs = A

Now from (23),
gn = an - lndn
= Fb, — A,{a, + ¢,

an Lbn + (FNRabn)/in
"F”"‘i"[z,, 72+ Nn,

_ Lb,d, + (FNgb,)

2+ N,
Since, area = Y. g,b,
b22 FNg,b?
— L nn a-n
Z)’rzl + NRa * (’15 + NRa)
Therefore
- N rab?)/(A2
L A= ZENRbD e + N e

2 bz /(22 + Ngo)

This completes the general solution of the
problem as far as the velocity and temperature
distribution in the duct are required. For engin-
eering purposes one also requires the rate of heat
transfer from the wall. An expression for this
parameter is developed in the following section.

NUSSELT NUMBER
Nusselt number is the dimensionless para-
meter indicative of the rate of energy convection
from a surface. It is expressed as
Dsh _ Dy q
Nyy = —=—".
M™% T kT, - T,
where h, the convection heat-transfer coefficient,
is based on mixed mean temperature of the fluid.
Nusselt number can be expressed also as,

1-F
4’

where ¢, is the dimensionless mixed mean
temperature difference between the fluid and
the wall at the same location,

e = |§ 6 dA/[] v dA.

(29)

Nyy = (30)

(31)
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Substitution from (21¢) and (21d) gives

_ 2 dg,
™ Y bugn

This completes the general solution of the prob-
lem. This means that if we know ¥, b,, and 4,
for a membrane of any shape, the Nusselt
number for the ducts of corresponding shape
can also be obtained from the same solution.
Our interest is to apply the membrane solutions
for three duct shapes for which the Nusselt
numbers do not appear to be available in the
literature.

¢

(32)

PARTICULAR SOLUTIONS

We now specialize the general solution to the
three triangular ducts. The required: quantities
V.. b,, and A, for each case are given below.

(1) Equilateral triangular duct

The equilateral triangle is shown in Fig. 1(b).

It is easy to show that the following expressions
for iy, are equivalent to those given by Wakasugi
[ 10, equations (5) and (6)].

nmy

2m + nymx .

Ypn = Com l:sin 5o sin
S

2n)m
1)mﬂsm(m-k njx

,_(_

+ (—1)"sin

(m — n)nx i (m + ")f_)f
3a ¥ b

Go—d. [COS @m 4 nux . nmy
A
2n\m:
(1 cos 2R G Y
3a b

(m—nnx . (m+ n)ny}
__qyn+1 N
+ (=1 cos T sin 5

where ¢, and d,,, are certain constants, and b
is the altitude.
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In our case, however, b, is different from zero
only for the following eigenfunctions:

iy = Y2208 "™ gin "
J a

(3ab) h
+ (=17 sin 3«”};”]. (33)

The constant (,/2)/,/(3ab) in i, has been adjusted
to satisfy (18). We obtain b, from (21) and it turns
out to be

b, N
nTm

(34)

Also, we have,

2
Vi, = \/gjb) (* 4';)2n2) [2 cos %{ sin n—?i
+ (=1 sin 3”1713, (35)
therefore
A= 4r;:zni _ 4;1;7:2 36)

(2) 30°, 60° Right-angled triangular duct

This triangle is shown in Fig, 1(c). For this
triangle the three desired quantities in a similar
amount as before following Wakasugi [11] are,

N _omnx . (3m+ 2n ym
l//m,,—a\/(\/:;) sin p; sin —«——\/3— —a~>

— sin {(m + n) nx/a) sin (3”“\-/%-2)';)

+ sin (2m + n) nx/a) siné@-};,. (37

/
W/

4 2
Ao = —nf(?’m2 + n? + 3mn).

34 (38)

b a,/25 [l—cosmn 1 — cosnn

n? J(J/3) [m(3m + 2n) * n(2m + n)
1 —cos(m + n) n] (39)

(m+ n)Gm + n)
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(3) Right-angled isosceles triangular duct

The coordinate system for this triangle is
shown in Fig. 1(d) and the required quantities
are,

mmnx

2. .
Vo = P smT sin

nmy

a

. MWX . mxm
— sin —-sin —y] for n>m (40)
a a

mn = m7t2(r?2ai m?) (41a)
if nis even and m is odd (n > m)
= szamlm (41b)
if mis even and n is odd (n > m)
=0
if n and m are both odd or both even.
An = (M? + n*)n?/a’. (42)

This completes exact solution of fully devel-
oped combined free and forced convection with
uniform internal heat sources in the fluid, in
the three specified vertical triangular ducts.

DISCUSSION

The values of Nusselt number, equation (30)
and the pressure drop parameter, equation (28)
have been computed for several values of
the Rayleigh number for each of the three tri-
angular configurations. At F = 0 those values of
Nusselt number and pressure drop parameter
are listed in Table 1. At F = 0 the variation of
Nusselt number and pressure drop parameter
against Rayleigh number is also shown in
Figs. 2 and 3, respectively. In Fig. 2, Nusselt
numbers for only two triangles are shown as
there was not enough space on this diagram for
the right-angled isosceles. In Fig. 3, one curve is
shown as pressure drop parameter for all three
ducts, although there is a slight numerical
difference in their numerical values, Table 1.
At zero Rayleigh number, the values of Nusselt
number for the tubes agree with the results of
references [13, 14]. At zero Rayleigh number,
highest value of the Nusselt number is obtained
by the equilateral triangle. As the value of the
Rayleigh number is increased, the percentage
difference in Nusselt number between the three
cases diminishes. It, therefore, means that the
presence of large free convection effects tend to

Table 1. Variation of Nusselt number and pressure drop parameter against Rayleigh number for three triangular ducts

Rayleigh Nusselt number Ny Pressure drop parameter L
number
Nza 60°—60°—60°  30°-—60°—90° 45°-45°—90°  60°—60°—60° 30°—60°—90°  45°—45°--90°
0 31111 2:8875 2-9819 266668 26:0677 26:3063
10 3-1249 29067 2:9984 27-4686 269307 27-1424
10? 3-2475 30730 31436 34-5306 34-4557 34-4690
3 x 102 3-4447 3-3280 3-3719 45-7385 46-1709 459797
5 x 10? 31537 37017 3-7183 63-1045 639450 63-6066
8 x 10? 40392 40250 40275 79-1441 80-1168 79-7410
103 4-3029 43091 4-3053 94-1270 951109 94-7386
2 x 10° 51761 5:1903 5-1891 146-7824 147-5910 147-2683
3 x 10° 58375 5-8314 5-8400 192:1201 192-8906 192-5375
5 x 103 67971 67632 67833 2710402 272:0765 271-5378
8 x 103 - 7-6444 7-5975 7-6247 3574286 3589599 3581352
10* 82944 8:2406 8-2737 4357798 437-8083 436:6856
2 x 10* 10-0640 99778 100368 706:7318 7107794 708-3187
3 x 10¢ 11-2540 11-1304 11-2161 940-8602 9472163 943-1565
5 x 10* 129369 12-7397 12-8782 13530771 13649150 1357-0093
8 x 10* 14-4346 14-1474 14-3506 1808-9477 18289385 1815-2493
10° 15-5929 15-2170 15-4837 2224-8617 22542112 2233-8457
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diminish the difference in heat-transfer

rate

between the three configurations considered.

10/ T T T T T T T

F=0

T

(See table | for right - angled isosceles)

T

F Equilateral triangle

Nusselt number Ay,

\
30°~60° Triangle

1 " bl d Lt L b L L "
Z

T

e

10 10 103

Rayleigh number A/,
F16. 2. Nusselt number against Rayleigh number.

103 T T

T ~r

L All three cases

(Numerical values slightly different,
see fable |}

Pressure drop parameter L

10 Ll L I BN L L

T

T

gyl

L

10 to? 103
Rayleigh number Ak

104

FIG. 3. Pressure drop parameter against Rayleigh number.

This does not mean, however, that for a triangular
duct with any arbitary angles the Nusselt num-
bers will be the same or very close to those ob-
tained for the three cases considered. In pure

forced convection, it has been shown [13,

14]

that considerable variation in Nusselt numbers
results when the angles are varied by large
amounts. Unfortunately, the present analysis
does not extend itself for any arbitrary angles ofa
triangular duct. This could have been possible,
however, if the corresponding solutions of

membrane problems were available.

The velocity profile plots at F = 0, are given
in Figs. 4-6. Figure 4 is for the equilateral

triangle. The velocity profiles are at x;

=0

and y, varying from 0 to 1-5. Three values of the
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Rayleigh number have been chosen to show
significantly different variations. Atx, = y, = 0,

T T
Equilateral triangle

2'5

2:0

[}

1)

10

Velocity v =uw /U ot x,

i
-0

05
Axial distance y =y /0,

F1G. 4. Dimensionless velocity v against dimensionless axial
distance y, for various values of the Rayleigh number.

15

T T

30°-60° Triangle 60°

]
e y

-—-- =200
F=0

T T

n
[¢]

!

Nea =0

n
o

@

o

Q
[t

Velocity v=w/{/ at two radial positions

3%

0

15 2366
Axial distance x=x/0,

F1G. 5. Dimensionless velocity v at two radial positions
against axial distance x, for various values of the Rayleigh
number.

the velocity gradient is higher than at x, = 0,
y1 = 15, for the simple fact that the flow at the
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corner angles slows down. As the Rayleigh
number increases, the flow accelerates near the

T T T T
Right-ongled isosceles triangle
. F= N 2,0 4

301 o o lea
§ AN 0
2 X
= 0%
o
§ eof '
)
N
2
b
Y
2z
g 1o R
3
>

ook -

-0'25 1 1 1 —1
08 10 -2 4 16 175

Axiol distance x=x/0,
F1G. 6. Dimensionless velocity v along the line 1 — magainst
axial distance x, for various values of the Rayleigh number.

walls. To satisfy continuity, the flow slows down
near the tube “centre”. For large values of the
Rayleigh number, it is possible to obtain flow
reversal at the tube “centre”, while the net flow
remains in the upwards direction. This indeed
is true at Rayleigh number of 10, It is unlikely,
however, that in practice a flow reversal near
the “centre” will be possible to maintain. For a
similar situation in vertical circular tubes it is
known [15] that flow reversal at the tube centre
or near the wall gives rise to flow instability and
eventually turbulent flow results.

The velocity profiles for 30°-60° triangle are
shown in Fig. 5. The velocity profiles are plotted
for two radial positions; 10° and 20° from the
x-axis. They are indicated in solid line and in
dotted line respectively. At zero Rayleigh number
the velocity gradients at the corner angle of 30°
are much smaller than those at the wall, x,
2-366. As the Rayleigh number is increased, the
velocity increases near the walls, while near the
“centre” it slows down. The numerical data
shows that for this tube, flow reversal will take
place at Rayleigh number near to 10°. This value,
however, is not plotted in Fig. 5.

For right angled isosceles triangular tube, the
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velocity profiles are shown in Fig. 6. These
profiles are along a line called 1 — m, connecting
the right-angled corner and middle point of the
hypotenuse. These profiles are very similar
to those of Fig. 4. The flow reversal occurs at a
Rayleigh number of close to 10*.

At F = 0, the temperature profiles for the three
triangles are plotted in Figs. 7-9. Figure 7
shows the temperature profiles for the equilateral
triangle. As expected, the temperature difference
between the wall and fluid decreases as the Ray-
leigh number increases, This pattern remains the
same for the 30°-60° triangle, Fig. 8 and the
right-angled isosceles triangle, Fig. 9. This re-
duced temperature difference with increasing
values of the Rayleigh number increases the
Nusselt number as is apparent from Table 1
and Fig, 2.

The effect of internal heat generation para-
meter on various quantities has also been in-
vestigated. The heat generation parameter de-
creases the Nusselt number, until the Nusselt
number becomes zero when F = 1. This result
one expects from physical arguments and
also from equation (30). The pressure drop
parameter also decreases as the heat generation

~oush

T T

Equilateral triangle

-010

-0-05

Temperature difference ¢ at x=0

-0 L I
00Q o5 -0

Axial distance y=y /0,
F1G. 7. Dimensionless temperature difference ¢ at x, = 0
against axial distance y, for various values of the Rayleigh
number.

\-5
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T T T T
30°-60° Triangle

§0°  F:=0 -
y
—110°
,,

~ 015

-0t0

~0-05

Temperature difference ¢
at two radials positions

e i 1 |
00 05 1-0 15 2:0

2:366

Axial distance x=x/D,
Fi1G. 8. Dimensionless temperature difference ¢ at two
radial positions against axial distance x, for various values
of the Rayleigh number.

T T H
Right angled isosceles triangle

Fro

- 008

Temperature difference ¢ along t-m

- 0:00— . L L
08 o 12 Ia 16 175

Axial distonce x = x /0.
F16. Y. Dimensionless temperature difference ¢ along line
1 — m for various values of the Rayleigh number.

parameter increases. However, this happens
only when the free convection effect is also
present, i.e. when the velocity and temperature
fields are coupled. Therefore, the influence of
heat generation parameter on the pressure drop
parameter depends upon the strength of the
coupling of velocity and temperature fields, i.e.
on the value of the Rayleigh number as well.
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The internal heat generation parameter effects
the velocity distribution as well, as long as there
is coupling between the velocity and tempera-
ture fields, ie. the presence of free convection
in the flow. The heat generation parameter hasa
dominant effect on the temperature distribution.
This effect is independent of the above mentioned
coupling, however.

The influence of heat generation parameter
on Nusselt number, pressure drop parameter,
velocity and temperature distribution in the
three triangular ducts has not been illustrated
with the help of diagrams. The reason for this is
that the general effect of the heat generation
parameter is similar to the reports of other
researchers, for instance [3] and [7]. From the
foregoing analysis, one can indeed evaluate
exactly any of the desired quantities with or
without heat generation parameter and Rayleigh
number.

CONCLUSIONS

Exact analytical solutions of combined free and
forced convection through vertical triangular
tubes of shapes (i) equilateral, (ii) 30°—60°—90°
triangular and (iii) right-angled isosceles tri-
angular tubes have been presented. Effect of
heat generation has been included. Nusselt
number increases with Rayleigh number. How-
gver, the relative difference between the Nusselt
number for the three shapes studied diminishes
as the Rayleigh number is increased.
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Résumé—Des solutions des problémes de vibration de membrane ont été utilisées pour I’étude de la
convection laminaire mixte (naturelle et forcée) entiérement établie 3 travers des conduites rectilignes
verticales & sections triangulaires 1°) équilatérales, 2°) avec des angles égaux a 30°, 60° et 90° et 3°) isocéle
avec un angle droit. On suppose qu’on se trouve en régime permanent. Toutes les propriétés de fluide
sont considérées comme constantes, sauf pour la variation de densité dans les termes de poussée d’Archi-
méde. On suppose que la température pariétale varie linéairement dans la direction de 1'écoulement,
tandis qu’on la considére comme uniforme dans la direction transversale. On a tenu compte de Ia présence
d’une source de chaleur volumique uniforme. Des expressions théoriques exactes sous la forme de séries
infinies ont €té& présentées pour la vitesse, la température et les nombres de Nusselt pour les trois tubes
triangulaires considérés. Les différences entre les nombres de Nusselt pour les trois conduites triangulaires
deviennent relativement faibles lorsque la valeur du nombre de Rayleigh augmente. Les petites valeurs
du paramétre de source de chaleur diminuent le nombre de Nusselt.

Zusammenfassung— Losungen von Membranschwingungsproblemen wurden zum Studium der vollaus-
gebildeten, freien und erzwurgenen laminaren Konvektion durch gerade, senktechte Dreickskanile
folgender Gestalt herangezogen, (i) gleichseitig, (i) 30° — 60° — 90° und (iii) rechtwinklig, gleichschenklig.

Stationdrer Zustand sei vorausgesetzt. Alle stoffwerte mit Ausnahme der Dichte im Auftriebsglied
werden als konstant vorausgesetzt. Die Wandtemperatur dndert sich linear in Strémungsrichtung und ist
gleichférmig in Richtung senkrecht dazu.

Gleichférmig verteilte Wirmequellen wurden mit in Betracht gezogen.

Fiir die drei betrachteten Kandle werden das Geschwindigkeits- und Temperaturfeld und die Nusselt-
zahlen durch exakte Ausdriicke in Form unendlicher Reihen dargestelit.

Mit steigenden Werten der Rayleigh-Zahl wird der Unterschied zwischen den Nusselzahlen fiir die

drei Dreiecke relativ klein. Kleine Werte fiir den Wiarmequellenparameter senken die Nusselt-Zahl.

Andoranua—Pemenna 3aay 171a koneGomeRcs MeMGpaHbl UCIOIL30BAIINCE AJIA U3YUCHUA
NOJHOCTEIO PaBsBUTON COBMECTHON CBOGOXHOM M BBHIHYMKAECHHON JIaMUHADHOU KOHBeKIUHM B
TIPAMBIX BEPTUKAJIBHLIX TPEYTOJLHLIX KaHANIAX Clefyiomux Gopm :

(1) PaBuocropougeit, (2) 30°-60°-90° u (3) npamoyrosnsuo#t paBnoGenpennoit. [puusaro,
YTO YCIOBHA ABJAWTCA CTAUMOHADHHIMU. Bee CBOMCTBA UIAKOCTH CUYMTAIOTCHA TOCTOAHHBIMMY,
38 HCKIIIOYEHMEM HJIOTHOCTM, BXOJAIIEH B YJIeHBI ¢ MOAbeMHON cumoit. [Ipunsaro, uro Temne-
paTypa CTeHKU U3MEeHAETCH JINHEKHO B HANPABJIEHHH TEUEHUA, B TO BpeMA KaK B MONEPEUHOM
HaNpaBIIeHUN OHA CYMTAETCA ONHOPORHON. PaccMoTpeno Hamudue OXHOPORHOTO OGLEMHOTO
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HCTOYHUKA Tenna, B Binle GeCkolledHHX PHIOB 1IPeACTaBJIeHBl TOUHBIE aHAJIHTUYECKUEe BhIPU-
FREHNA JUIA CKOPOCTH, TeMiepaTypul 1 kpurepua Hyccenpra aas paccmorpennnix Tpy6 Tpex
dopm. PasHocTh Mempy sHaueHnmaMu KpuTepus HyccenbTa miA rpex THIIOR TPeyrojibHBIX
KAUAJI0B CTAHOBMTCH OTHOCHTEJIbHO HEeOOJIbHION 110 Mepe yBeauveHus KpuTepnsi Peren.
HeGo:pume 3HaYeHUS MapaMeTpa TeflNIOBOTO HCTOUHMKA CHUMAeT Kpurepuit Hycceabra.



